Automatic Medical Report Generation Based on Cross-View Attention and Visual-Semantic Long Short Term Memorys

Author:

Gu Yunchao123,Li Renyu1,Wang Xinliang1,Zhou Zhong1

Affiliation:

1. State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing 100191, China

2. Hangzhou Innovation Institute, Beihang University, Hangzhou 310051, China

3. Research Unit of Virtual Body and Virtual Surgery Technologies, Chinese Academy of Medical Sciences, 2019RU004, Beijing 100191, China

Abstract

Automatic medical report generation based on deep learning can improve the efficiency of diagnosis and reduce costs. Although several automatic report generation algorithms have been proposed, there are still two main challenges in generating more detailed and accurate diagnostic reports: using multi-view images reasonably and integrating visual and semantic features of key lesions effectively. To overcome these challenges, we propose a novel automatic report generation approach. We first propose the Cross-View Attention Module to process and strengthen the multi-perspective features of medical images, using mean square error loss to unify the learning effect of fusing single-view and multi-view images. Then, we design the module Medical Visual-Semantic Long Short Term Memorys to integrate and record the visual and semantic temporal information of each diagnostic sentence, which enhances the multi-modal features to generate more accurate diagnostic sentences. Applied to the open-source Indiana University X-ray dataset, our model achieved an average improvement of 0.8% over the state-of-the-art (SOTA) model on six evaluation metrics. This demonstrates that our model is capable of generating more detailed and accurate diagnostic reports.

Funder

Technological Innovation 2030—“New Generation Artificial Intelligence” Major Project

CAMS Innovation Fund for Medical Sciences

Publisher

MDPI AG

Subject

Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3