Comparing the Robustness of ResNet, Swin-Transformer, and MLP-Mixer under Unique Distribution Shifts in Fundus Images

Author:

Ishihara Kazuaki1,Matsumoto Koutarou1

Affiliation:

1. Biostatistics Center, Kurume University, Kurume 830-0011, Japan

Abstract

Background: Diabetic retinopathy (DR) is the leading cause of visual impairment and blindness. Consequently, numerous deep learning models have been developed for the early detection of DR. Safety-critical applications employed in medical diagnosis must be robust to distribution shifts. Previous studies have focused on model performance under distribution shifts using natural image datasets such as ImageNet, CIFAR-10, and SVHN. However, there is a lack of research specifically investigating the performance using medical image datasets. To address this gap, we investigated trends under distribution shifts using fundus image datasets. Methods: We used the EyePACS dataset for DR diagnosis, introduced noise specific to fundus images, and evaluated the performance of ResNet, Swin-Transformer, and MLP-Mixer models under a distribution shift. The discriminative ability was evaluated using the Area Under the Receiver Operating Characteristic curve (ROC-AUC), while the calibration ability was evaluated using the monotonic sweep calibration error (ECE sweep). Results: Swin-Transformer exhibited a higher ROC-AUC than ResNet under all types of noise and displayed a smaller reduction in the ROC-AUC due to noise. ECE sweep did not show a consistent trend across different model architectures. Conclusions: Swin-Transformer consistently demonstrated superior discrimination compared to ResNet. This trend persisted even under unique distribution shifts in the fundus images.

Funder

Japanese Ministry of Education

Publisher

MDPI AG

Subject

Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3