Investigating the Extracellular-Electron-Transfer Mechanisms and Kinetics of Shewanella decolorationis NTOU1 Reducing Graphene Oxide via Lactate Metabolism

Author:

Liou Yu-Xuan1,Li Shiue-Lin1ORCID,Hsieh Kun-Yi1,Li Sin-Jie1,Hu Li-Jie1

Affiliation:

1. Department of Environmental Science and Engineering, Tunghai University, Taichung 40704, Taiwan

Abstract

Microbial graphene oxide reduction is a developing method that serves to reduce both production costs and environmental impact in the synthesis of graphene. This study demonstrates microbial graphene oxide reduction using Shewanella decolorationis NTOU1 under neutral and mild conditions (pH = 7, 35 °C, and 1 atm). Graphene oxide (GO) prepared via the modified Hummers’ method is used as the sole solid electron acceptor, and the characteristics of reduced GO (rGO) are investigated. According to electron microscopic images, the surface structure of GO was clearly changed from smooth to wrinkled after reduction, and whole cells were observed to be wrapped by GO/rGO films. Distinctive appendages on the cells, similar to nanowires or flagella, were also observed. With regard to chemical-bonding changes, after a 24-h reaction of 1 mg mL−1, GO was reduced to rGO, the C/O increased from 1.4 to 3.0, and the oxygen-containing functional groups of rGO were significantly reduced. During the GO reduction process, the number of S. decolorationis NTOU1 cells decreased from 1.65 × 108 to 1.03 × 106 CFU mL−1, indicating the bactericide effects of GO/rGO. In experiments adding consistent concentrations of initial bacteria and lactate, it was shown that with the increase of GO additions (0.5–5.0 mg mL−1), the first-order reaction rate constants (k) of lactate metabolism and acetate production increased accordingly; in experiments adding consistent concentrations of initial bacteria and GO but different lactate levels (1 to 10 mM), the k values of lactate metabolism did not change significantly. The test results of adding different electron transfer mediators showed that riboflavin and potassium ferricyanide were able to boost GO reduction, whereas 2,6-dimethoxy-1,4-benzoquinone and 2,6-dimethyl benzoquinone completely eliminated bacterial activity.

Funder

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3