OptEF-BCI: An Optimization-Based Hybrid EEG and fNIRS–Brain Computer Interface

Author:

Ali Muhammad Umair1ORCID,Kim Kwang Su23ORCID,Kallu Karam Dad4,Zafar Amad1ORCID,Lee Seung Won5ORCID

Affiliation:

1. Department of Intelligent Mechatronics Engineering, Sejong University, Seoul 05006, Republic of Korea

2. Department of Scientific Computing, Pukyong National University, Busan 48513, Republic of Korea

3. Interdisciplinary Biology Laboratory (iBLab), Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan

4. Department of Robotics & Artificial Intelligence (R&AI), School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST) H-12, Islamabad 44000, Pakistan

5. Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon 16419, Republic of Korea

Abstract

Multimodal data fusion (electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS)) has been developed as an important neuroimaging research field in order to circumvent the inherent limitations of individual modalities by combining complementary information from other modalities. This study employed an optimization-based feature selection algorithm to systematically investigate the complementary nature of multimodal fused features. After preprocessing the acquired data of both modalities (i.e., EEG and fNIRS), the temporal statistical features were computed separately with a 10 s interval for each modality. The computed features were fused to create a training vector. A wrapper-based binary enhanced whale optimization algorithm (E-WOA) was used to select the optimal/efficient fused feature subset using the support-vector-machine-based cost function. An online dataset of 29 healthy individuals was used to evaluate the performance of the proposed methodology. The findings suggest that the proposed approach enhances the classification performance by evaluating the degree of complementarity between characteristics and selecting the most efficient fused subset. The binary E-WOA feature selection approach showed a high classification rate (94.22 ± 5.39%). The classification performance exhibited a 3.85% increase compared with the conventional whale optimization algorithm. The proposed hybrid classification framework outperformed both the individual modalities and traditional feature selection classification (p < 0.01). These findings indicate the potential efficacy of the proposed framework for several neuroclinical applications.

Funder

National Research Foundation of Korea (NRF) grant funded by the Korean government

Publisher

MDPI AG

Subject

Bioengineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3