Microwave Breast Sensing via Deep Learning for Tumor Spatial Localization by Probability Maps

Author:

Borghouts Marijn1ORCID,Ambrosanio Michele2ORCID,Franceschini Stefano3ORCID,Autorino Maria Maddalena3ORCID,Pascazio Vito3ORCID,Baselice Fabio3ORCID

Affiliation:

1. Department of Biomedical Engineering, Technical University of Eindhoven, 5600 MB Eindhoven, The Netherlands

2. Department of Economics, Law, Cybersecurity and Sports Sciences, University of Naples “Parthenope”, 80035 Nola, Italy

3. Department of Engineering, University of Napoli “Parthenope”, 80143 Naples, Italy

Abstract

Background: microwave imaging (MWI) has emerged as a promising modality for breast cancer screening, offering cost-effective, rapid, safe and comfortable exams. However, the practical application of MWI for tumor detection and localization is hampered by its inherent low resolution and low detection capability. Methods: this study aims to generate an accurate tumor probability map directly from the scattering matrix. This direct conversion makes the probability map independent of specific image formation techniques and thus potentially complementary to any image formation technique. An approach based on a convolutional neural network (CNN) is used to convert the scattering matrix into a tumor probability map. The proposed deep learning model is trained using a large realistic numerical dataset of two-dimensional (2D) breast slices. The performance of the model is assessed through visual inspection and quantitative measures to assess the predictive quality at various levels of detail. Results: the results demonstrate a remarkably high accuracy (0.9995) in classifying profiles as healthy or diseased, and exhibit the model’s ability to accurately locate the core of a single tumor (within 0.9 cm for most cases). Conclusion: overall, this research demonstrates that an approach based on neural networks (NN) for direct conversion from scattering matrices to tumor probability maps holds promise in advancing state-of-the-art tumor detection algorithms in the MWI domain.

Publisher

MDPI AG

Subject

Bioengineering

Reference45 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3