Pre-Planning the Surgical Target for Optimal Implant Positioning in Robotic-Assisted Total Knee Arthroplasty

Author:

Tzanetis Periklis1ORCID,Fluit René23ORCID,de Souza Kevin4ORCID,Robertson Seonaid4,Koopman Bart1,Verdonschot Nico13

Affiliation:

1. Department of Biomechanical Engineering, University of Twente, 7522 LW Enschede, The Netherlands

2. Faculty of Science and Engineering, University of Groningen, 9747 AG Groningen, The Netherlands

3. Orthopaedic Research Laboratory, Radboud Institute for Health Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands

4. Stryker, Manchester M20 2HJ, UK

Abstract

Robotic-assisted total knee arthroplasty can attain highly accurate implantation. However, the target for optimal positioning of the components remains debatable. One of the proposed targets is to recreate the functional status of the pre-diseased knee. The aim of this study was to demonstrate the feasibility of reproducing the pre-diseased kinematics and strains of the ligaments and, subsequently, use that information to optimize the position of the femoral and tibial components. For this purpose, we segmented the pre-operative computed tomography of one patient with knee osteoarthritis using an image-based statistical shape model and built a patient-specific musculoskeletal model of the pre-diseased knee. This model was initially implanted with a cruciate-retaining total knee system according to mechanical alignment principles; and an optimization algorithm was then configured seeking the optimal position of the components that minimized the root-mean-square deviation between the pre-diseased and post-operative kinematics and/or ligament strains. With concurrent optimization for kinematics and ligament strains, we managed to reduce the deviations from 2.4 ± 1.4 mm (translations) and 2.7 ± 0.7° (rotations) with mechanical alignment to 1.1 ± 0.5 mm and 1.1 ± 0.6°, and the strains from 6.5% to lower than 3.2% over all the ligaments. These findings confirm that adjusting the implant position from the initial plan allows for a closer match with the pre-diseased biomechanical situation, which can be utilized to optimize the pre-planning of robotic-assisted surgery.

Funder

Stryker

Publisher

MDPI AG

Subject

Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3