Systematic Myostatin Expression Screening Platform for Identification and Evaluation of Myogenesis-Related Phytogenic in Pigs

Author:

Ou Bor-Rung1,Hsu Ming-Hua2ORCID,Haung Ling-Ya1,Lin Chuan-Ju3,Kuo Li-Li3,Tsai Yu-Ting1,Chang Yu-Chia3,Lin Wen-Yuh1,Huang Tsung-Chien1,Wu Yun-Chu1,Yeh Jan-Ying4,Liang Yu-Chuan35

Affiliation:

1. Department of Animal Science and Biotechnology, Tunghai University, Taichung 407, Taiwan

2. Department of Chemistry, National Changhua University of Education, Changhua 500, Taiwan

3. Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan

4. Department of Food Nutrition and Health Biotechnology, Asia University, Taichung 413, Taiwan

5. College of Agriculture and Health, Tunghai University, Taichung 407, Taiwan

Abstract

Skeletal muscle growth in livestock impacts meat quantity and quality. Concerns arise because certain feed additives, like beta-agonists, may affect food safety. Skeletal muscle is a specialized tissue consisting of nondividing and multinucleated muscle fibers. Myostatin (MSTN), a protein specific to skeletal muscle, is secreted and functions as a negative regulator of muscle mass by inhibiting the proliferation and differentiation of myoblasts. To enhance livestock muscle growth, phytogenic feed additives could be an alternative as they inhibit MSTN activity. The objective of this study was to establish a systematic screening platform using MSTN activity to evaluate phytogenics, providing scientific evidence of their assessment and potency. In this study, we established a screening platform to monitor myostatin promoter activity in rat L8 myoblasts. Extract of Glycyrrhiza uralensis (GUE), an oriental herbal medicine, was identified through this screening platform, and the active fractions of GUE were identified using a process-scale liquid column chromatography system. For in vivo study, GUE as a feed additive was investigated in growth-finishing pigs. The results showed that GUE significantly increased body weight, carcass weight, and lean content in pigs. Microbiota analysis indicated that GUE did not affect the composition of gut microbiota in pigs. In summary, this established rodent myoblast screening platform was used to identify a myogenesis-related phytogenic, GUE, and further demonstrated that the active fractions and compounds inhibited MSTN expression. These findings suggest a novel application for GUE in growth performance enhancement through modulation of MSTN expression. Moreover, this well-established screening platform holds significant potential for identifying and assessing a diverse range of phytogenics that contribute to the process of myogenesis.

Funder

Ministry of Science and Technology

Academia Sinica

Publisher

MDPI AG

Subject

Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3