Validation of Lead-DBS β-Oscillation Localization with Directional Electrodes

Author:

Boëx Colette12ORCID,Awadhi Abdullah Al1ORCID,Tyrand Rémi12,Corniola Marco V.3,Kibleur Astrid4,Fleury Vanessa23ORCID,Burkhard Pierre R.2,Momjian Shahan12

Affiliation:

1. Department of Neurosurgery, University Hospitals of Geneva, CH-1205 Geneva, Switzerland

2. Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland

3. Department of Neurosurgery, Pontchaillou Hospitals, CEDEX 9, F-35033 Rennes, France

4. Centre Hospitalier Universitaire Caen Normandie, F-14000 Caen, France

Abstract

In deep brain stimulation (DBS) studies in patients with Parkinson’s disease, the Lead-DBS toolbox allows the reconstruction of the location of β-oscillations in the subthalamic nucleus (STN) using Vercise Cartesia directional electrodes (Boston Scientific). The objective was to compare these probabilistic locations with those of intraoperative monopolar β-oscillations computed from local field potentials (0.5–3 kHz) recorded by using shielded single wires and an extracranial shielded reference electrode. For each electrode contact, power spectral densities of the β-band (13–31 Hz) were compared with those of all eight electrode contacts on the directional electrodes. The DBS Intrinsic Template AtLas (DISTAL), electrophysiological, and DBS target atlases of the Lead-DBS toolbox were applied to the reconstructed electrodes from preoperative MRI and postoperative CT. Thirty-six electrodes (20 patients: 7 females, 13 males; both STN electrodes for 16 of 20 patients; one single STN electrode for 4 of 20 patients) were analyzed. Stimulation sites both dorsal and/or lateral to the sensorimotor STN were the most efficient. In 33 out of 36 electrodes, at least one contact was measured with stronger β-oscillations, including 23 electrodes running through or touching the ventral subpart of the β-oscillations’ probabilistic volume, while 10 did not touch it but were adjacent to this volume; in 3 out of 36 electrodes, no contact was found with β-oscillations and all 3 were distant from this volume. Monopolar local field potentials confirmed the ventral subpart of the probabilistic β-oscillations.

Publisher

MDPI AG

Subject

Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3