Fluorometric Detection of SARS-CoV-2 Single-Nucleotide Variant L452R Using Ligation-Based Isothermal Gene Amplification

Author:

Kyung Kangwuk1,Ku Jamin1ORCID,Cho Eunbin1,Ryu Junhyung1,Woo Jin2,Jung Woong2ORCID,Kim Dong-Eun1ORCID

Affiliation:

1. Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea

2. Department of Emergency Medicine, Kyung Hee University College of Medicine, Kyung Hee University Hospital at Gangdong, Seoul 05278, Republic of Korea

Abstract

Since the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant was first discovered, several variants showing different infectivity and immune responses have emerged globally. As the conventional method, whole-genome sequencing following polymerase chain reaction (PCR) is currently used for diagnosis of SARS-CoV-2 mutations. However, these conventional PCR-based direct DNA sequencing methods are time-consuming, complicated, and require expensive DNA sequencing modules. Here, we developed a fluorometric method for the accurate detection of a single missense mutation of U to G in the spike (S) gene that changes leucine to arginine (L452R) in SARS-CoV-2 genomic RNA. Our method for the detection of single-nucleotide mutations (SNM) in the viral RNA genome includes RNA sequence-dependent DNA ligation and tandem isothermal gene amplification methods, such as strand displacement amplification (SDA) and rolling circle amplification (RCA) generating G-quadruplex (GQ). In the presence of SNM in the viral RNA, ligation of both ends of the probe DNAs occurs between 5′-phosphorylated hairpin DNA and linear probe DNA that can discriminate a single base mismatch. The ligated DNAs were then extended to generate long-stem hairpin DNAs that are subjected to the first isothermal gene amplification (SDA). SDA produces multitudes of short ssDNA from the long-stem hairpin DNAs, which then serve as primers by annealing to circular padlock DNA for the second isothermal gene amplification (RCA). RCA produces a long stretch of ssDNA containing GQ structures. Thioflavin T (ThT) is then intercalated into GQ and emits green fluorescence, which allows the fluorometric identification of SARS-CoV-2 variants. This fluorometric analysis sensitively distinguished SNM in the L452R variant of SARS-CoV-2 RNA as low as 10 pM within 2 h. Hence, this fluorometric detection method using ligation-assisted tandem isothermal gene amplification can be applied for the diagnosis of SARS-CoV-2 SNM variants with high accuracy and sensitivity, without the need for cumbersome whole-genome DNA sequencing.

Funder

Korea Evaluation Institute of Industrial Technology

Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea

Konkuk University Researcher Fund

Publisher

MDPI AG

Subject

Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3