Antibacterial Aerogels-Based Membranes by Customized Colloidal Functionalization of TEMPO-Oxidized Cellulose Nanofibers Incorporating CuO

Author:

Usala Elena1ORCID,Espinosa Eduardo12ORCID,El Arfaoui Wasim1,Morcillo-Martín Ramón1ORCID,Ferrari Begoña23ORCID,González Zoilo12ORCID

Affiliation:

1. BioPren Group (RNM940), Chemical Engineering Department, Instituto Químico Para la Energía y el Medioambiente (IQUEMA), Faculty of Science, Universidad de Córdoba (UCO), 14014 Córdoba, Spain

2. Unidad Asociada CSIC-UCO, Fabricación Aditiva de Materiales Compuestos Basados en Celulosa Funcionalizada, Obtenida de Residuos de Biomasa, 14014 Córdoba, Spain

3. Instituto de Cerámica y Vidrio, Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, c/Kelsen 5, 28049 Madrid, Spain

Abstract

An innovative colloidal approach is proposed here to carry out the customized functionalization of TEMPO-Oxidized Cellulose Nanofibers (CNF) incorporating non-noble inorganic nanoparticles. A heterocoagulation process is applied between the delignified CNF and as-synthetized CuO nanoparticles (CuO NPs) to formulate mixtures which are used in the preparation of aerogels with antibacterial effect, which could be used to manufacture membranes, filters, foams, etc. The involved components of formulated blending, CNF and CuO NPs, were individually obtained by using a biorefinery strategy for agricultural waste valorization, together with an optimized chemical precipitation, assisted by ultrasounds. The optimization of synthesis parameters for CuO NPs has avoided the presence of undesirable species, which usually requires later thermal treatment with associated costs. The aerogels-based structure, obtained by conventional freeze-drying, acted as 3D support for CuO NPs, providing a good dispersion within the cross-linked structure of the nanocellulose and facilitating direct contact of the antibacterial phase against undesirable microorganisms. All samples showed a positive response against Escherichia coli and Staphylococcus aureus. An increase of the antibacterial response of the aerogels, measured by agar disk diffusion test, has been observed with the increase of CuO NPs incorporated, obtaining the width of the antimicrobial “halo” (nwhalo) from 0 to 0.6 and 0.35 for S. aureus and E. coli, respectively. Furthermore, the aerogels have been able to deactivate S. aureus and E. coli in less than 5 h when the antibacterial assays have been analyzed by a broth dilution method. From CNF-50CuO samples, an overlap in the nanoparticle effect produced a decrease of the antimicrobial kinetic.

Publisher

MDPI AG

Subject

Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3