Spatial Distribution of Inhibitory Innervations of Excitatory Pyramidal Cells by Major Interneuron Subtypes in the Auditory Cortex

Author:

Zhong Wen1,Zheng Wenhong2,Ji Xuying2

Affiliation:

1. School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China

2. Department of Physiology, School of Basic Medical Sciences, Key Laboratory of Psychiatric Disorders of Guangdong Province, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou 510515, China

Abstract

Mental disorders, characterized by the National Institute of Mental Health as disruptions in neural circuitry, currently account for 13% of the global incidence of such disorders. An increasing number of studies suggest that imbalances between excitatory and inhibitory neurons in neural networks may be a crucial mechanism underlying mental disorders. However, the spatial distribution of inhibitory interneurons in the auditory cortex (ACx) and their relationship with excitatory pyramidal cells (PCs) remain elusive. In this study, we employed a combination of optogenetics, transgenic mice, and patch-clamp recording on brain slices to investigate the microcircuit characteristics of different interneurons (PV, SOM, and VIP) and the spatial pattern of inhibitory inhibition across layers 2/3 to 6 in the ACx. Our findings revealed that PV interneurons provide the strongest and most localized inhibition with no cross-layer innervation or layer specificity. Conversely, SOM and VIP interneurons weakly regulate PC activity over a broader range, exhibiting distinct spatial inhibitory preferences. Specifically, SOM inhibitions are preferentially found in deep infragranular layers, while VIP inhibitions predominantly occur in upper supragranular layers. PV inhibitions are evenly distributed across all layers. These results suggest that the input from inhibitory interneurons to PCs manifests in unique ways, ensuring that both strong and weak inhibitory inputs are evenly dispersed throughout the ACx, thereby maintaining a dynamic excitation–inhibition balance. Our findings contribute to understanding the spatial inhibitory characteristics of PCs and inhibitory interneurons in the ACx at the circuit level, which holds significant clinical implications for identifying and targeting abnormal circuits in auditory system diseases.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangdong

Publisher

MDPI AG

Subject

Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3