Distinction of Different Colony Types by a Smart-Data-Driven Tool

Author:

Rodrigues Pedro MiguelORCID,Ribeiro PedroORCID,Tavaria Freni KekhasharúORCID

Abstract

Background: Colony morphology (size, color, edge, elevation, and texture), as observed on culture media, can be used to visually discriminate different microorganisms. Methods: This work introduces a hybrid method that combines standard pre-trained CNN keras models and classical machine-learning models for supporting colonies discrimination, developed in Petri-plates. In order to test and validate the system, images of three bacterial species (Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus) cultured in Petri plates were used. Results: The system demonstrated the following Accuracy discrimination rates between pairs of study groups: 92% for Pseudomonas aeruginosa vs. Staphylococcus aureus, 91% for Escherichia coli vs. Staphylococcus aureus and 84% Escherichia coli vs. Pseudomonas aeruginosa. Conclusions: These results show that combining deep-learning models with classical machine-learning models can help to discriminate bacteria colonies with good accuracy ratios.

Funder

National Funds from FCT—Fundação para a Ciência e a Tecnologia

Publisher

MDPI AG

Subject

Bioengineering

Reference17 articles.

1. Automated counting of bacterial colonies on agar plates based on images captured at near-infrared light;Zhu;J. Microbiol. Methods,2018

2. Automated counting of bacterial colonies by image analysis;Raju;J. Multidiscip. Dent. Res.,2020

3. Breakwell, D.P., Macdonald, B., Woolverton, C.J., Smith, K.C., and Robison, R.A. (2007, January 16–19). Colony Morphology Protocol. Proceedings of the ASM Conference for Undergraduate Educators, San Diego, CA, USA.

4. Rodrigues, P.M., Luís, J., and Tavaria, F.K. (2022). Image Analysis Semi-Automatic System for Colony-Forming-Unit Counting. Bioengineering, 9.

5. Inhibition of Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Enterococcus feacalis through Malus DomesticaExtracts to Eliminate Food Borne Illness;Farooq;Am. J. Biomed. Sci. Res.,2019

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3