Straightforward Magnetic Resonance Temperature Measurements Combined with High Frame Rate and Magnetic Susceptibility Correction

Author:

Kim Sangwoo1ORCID,Kim Donghyuk2,Oh Sukhoon3ORCID

Affiliation:

1. Department of Radiological Science, Daewon University College, Jecheon 27135, Republic of Korea

2. Neuroscience Research Institute, Gachon University, Incheon 21988, Republic of Korea

3. Center for Research Equipment, Korea Basic Science Institute, Cheongju 28119, Republic of Korea

Abstract

Proton resonance frequency shift (PRFS) is an MRI-based simple temperature mapping method that exhibits higher spatial and temporal resolution than temperature mapping methods based on T1 relaxation time and diffusion. PRFS temperature measurements are validated against fiber-optic thermal sensors (FOSs). However, the use of FOSs may introduce temperature errors, leading to both underestimation and overestimation of PRFS measurements, primarily due to material susceptibility changes caused by the thermal sensors. In this study, we demonstrated susceptibility-corrected PRFS (scPRFS) with a high frame rate and accuracy for suitably distributed temperatures. A single-echo-based background removal technique was employed for phase variation correction, primarily owing to magnetic susceptibility, which enabled fast temperature mapping. The scPRFS was used to validate the temperature fidelity by comparing the temperatures of fiber-optic sensors and conventional PRFS through phantom-mimicked human and ex vivo experiments. This study demonstrates that scPRFS measurements in agar-gel are in good agreement with the thermal sensor readings, with a root mean square error (RMSE) of 0.33–0.36 °C in the phantom model and 0.12–0.16 °C in the ex vivo experiment. These results highlight the potential of scPRFS for precise thermal monitoring and ablation in both low- and high-temperature non-invasive therapies.

Funder

Institute for Information and Communications Technology Promotion

Publisher

MDPI AG

Subject

Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3