Dual-Guided Brain Diffusion Model: Natural Image Reconstruction from Human Visual Stimulus fMRI

Author:

Meng Lu1,Yang Chuanhao1ORCID

Affiliation:

1. College of Information Science and Engineering, Northeastern University, Shenyang 110819, China

Abstract

The reconstruction of visual stimuli from fMRI signals, which record brain activity, is a challenging task with crucial research value in the fields of neuroscience and machine learning. Previous studies tend to emphasize reconstructing pixel-level features (contours, colors, etc.) or semantic features (object category) of the stimulus image, but typically, these properties are not reconstructed together. In this context, we introduce a novel three-stage visual reconstruction approach called the Dual-guided Brain Diffusion Model (DBDM). Initially, we employ the Very Deep Variational Autoencoder (VDVAE) to reconstruct a coarse image from fMRI data, capturing the underlying details of the original image. Subsequently, the Bootstrapping Language-Image Pre-training (BLIP) model is utilized to provide a semantic annotation for each image. Finally, the image-to-image generation pipeline of the Versatile Diffusion (VD) model is utilized to recover natural images from the fMRI patterns guided by both visual and semantic information. The experimental results demonstrate that DBDM surpasses previous approaches in both qualitative and quantitative comparisons. In particular, the best performance is achieved by DBDM in reconstructing the semantic details of the original image; the Inception, CLIP and SwAV distances are 0.611, 0.225 and 0.405, respectively. This confirms the efficacy of our model and its potential to advance visual decoding research.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Non-profit Central Research Institute Fund of Chinese Academy of Medical Sciences

Chongqing Science and Health Joint Medical Research Project

Liaoning Provincial Natural Science Foundation Joint Fund for Medical–Industrial Crossover

Publisher

MDPI AG

Subject

Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3