Craniotomy Simulator with Force Myography and Machine Learning-Based Skills Assessment

Author:

Singh Ramandeep1,Godiyal Anoop Kant2,Chavakula Parikshith1,Suri Ashish1

Affiliation:

1. Neuro-Engineering Lab, Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi 110029, India

2. Department of Physical Medicine and Rehabilitation, All India Institute of Medical Sciences, New Delhi 110029, India

Abstract

Craniotomy is a fundamental component of neurosurgery that involves the removal of the skull bone flap. Simulation-based training of craniotomy is an efficient method to develop competent skills outside the operating room. Traditionally, an expert surgeon evaluates the surgical skills using rating scales, but this method is subjective, time-consuming, and tedious. Accordingly, the objective of the present study was to develop an anatomically accurate craniotomy simulator with realistic haptic feedback and objective evaluation of surgical skills. A CT scan segmentation-based craniotomy simulator with two bone flaps for drilling task was developed using 3D printed bone matrix material. Force myography (FMG) and machine learning were used to automatically evaluate the surgical skills. Twenty-two neurosurgeons participated in this study, including novices (n = 8), intermediates (n = 8), and experts (n = 6), and they performed the defined drilling experiments. They provided feedback on the effectiveness of the simulator using a Likert scale questionnaire on a scale ranging from 1 to 10. The data acquired from the FMG band was used to classify the surgical expertise into novice, intermediate and expert categories. The study employed naïve Bayes, linear discriminant (LDA), support vector machine (SVM), and decision tree (DT) classifiers with leave one out cross-validation. The neurosurgeons’ feedback indicates that the developed simulator was found to be an effective tool to hone drilling skills. In addition, the bone matrix material provided good value in terms of haptic feedback (average score 7.1). For FMG-data-based skills evaluation, we achieved maximum accuracy using the naïve Bayes classifier (90.0 ± 14.8%). DT had a classification accuracy of 86.22 ± 20.8%, LDA had an accuracy of 81.9 ± 23.6%, and SVM had an accuracy of 76.7 ± 32.9%. The findings of this study indicate that materials with comparable biomechanical properties to those of real tissues are more effective for surgical simulation. In addition, force myography and machine learning provide objective and automated assessment of surgical drilling skills.

Funder

Department of Health Research-DHR, Ministry of Health and Family Welfare, Govt. of India.

Department of Biotechnology-DBT, Ministry of Science and Technology, Govt. of India.

Publisher

MDPI AG

Subject

Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3