Mechanism of Pulp Regeneration Based on Concentrated Growth Factors Regulating Cell Differentiation

Author:

Yu Sijing1,Zheng Yi1,Guo Qiang2,Li Wenxu1,Ye Ling1,Gao Bo1

Affiliation:

1. State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China

2. State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China

Abstract

Concentrated growth factors (CGF) is the newest generation platelet concentrate product, which has been reported to promote the proliferation and differentiation of human dental pulp cells (hDPCs). However, the effect of liquid phase of CGF (LPCGF) has not been reported. This study was aimed to evaluate the influence of LPCGF on the biological properties of hDPCs, and to explore the in vivo mechanism of dental pulp regeneration based on the hDPCs-LPCGF complex transplantation. It was found that LPCGF could promote the proliferation, migration and odontogenic differentiation of hDPCs, and 25% LPCGF induced the most mineralization nodule formation and the highest DSPP gene expression. The heterotopic transplantation of the hDPCs-LPCGF complex resulted in the formation of regenerative pulp tissue with newly formed dentin, neovascularization and nerve-like tissue. Together, these findings provide key data on the effect of LPCGF on the proliferation, migration, odontogenic/osteogenic differentiation of hDPCs, and the in vivo mechanism of hDPCs-LPCGF complex autologous transplantation in pulp regeneration therapy.

Funder

Sichuan Science and Technology Program

Chengdu Key Application Projects of Science and Technology

Publisher

MDPI AG

Subject

Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3