AHANet: Adaptive Hybrid Attention Network for Alzheimer’s Disease Classification Using Brain Magnetic Resonance Imaging

Author:

Illakiya T.1,Ramamurthy Karthik2ORCID,Siddharth M. V.3,Mishra Rashmi4ORCID,Udainiya Ashish4

Affiliation:

1. School of Computer Science and Engineering, Vellore Institute of Technology, Chennai 600127, India

2. Centre for Cyber Physical Systems, Vellore Institute of Technology, Chennai 600127, India

3. School of Mechanical Engineering, Vellore Institute of Technology, Chennai 600127, India

4. School of Electronics Engineering, Vellore Institute of Technology, Chennai 600127, India

Abstract

Alzheimer’s disease (AD) is a progressive neurological problem that causes brain atrophy and affects the memory and thinking skills of an individual. Accurate detection of AD has been a challenging research topic for a long time in the area of medical image processing. Detecting AD at its earliest stage is crucial for the successful treatment of the disease. The proposed Adaptive Hybrid Attention Network (AHANet) has two attention modules, namely Enhanced Non-Local Attention (ENLA) and Coordinate Attention. These modules extract global-level features and local-level features separately from the brain Magnetic Resonance Imaging (MRI), thereby boosting the feature extraction power of the network. The ENLA module extracts spatial and contextual information on a global scale while also capturing important long-range dependencies. The Coordinate Attention module captures local features from the input images. It embeds positional information into the channel attention mechanism for enhanced feature extraction. Moreover, an Adaptive Feature Aggregation (AFA) module is proposed to fuse features from the global and local levels in an effective way. As a result of incorporating the above architectural enhancements into the DenseNet architecture, the proposed network exhibited better performance compared to the existing works. The proposed network was trained and tested on the ADNI dataset, yielding a classification accuracy of 98.53%.

Publisher

MDPI AG

Subject

Bioengineering

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3