Efficient Lung Ultrasound Classification

Author:

Bruno Antonio1ORCID,Ignesti Giacomo1ORCID,Salvetti Ovidio1ORCID,Moroni Davide1ORCID,Martinelli Massimo1ORCID

Affiliation:

1. Institute of Information Science and Technologies, National Research Council, 56124 Pisa, Italy

Abstract

A machine learning method for classifying lung ultrasound is proposed here to provide a point of care tool for supporting a safe, fast, and accurate diagnosis that can also be useful during a pandemic such as SARS-CoV-2. Given the advantages (e.g., safety, speed, portability, cost-effectiveness) provided by the ultrasound technology over other examinations (e.g., X-ray, computer tomography, magnetic resonance imaging), our method was validated on the largest public lung ultrasound dataset. Focusing on both accuracy and efficiency, our solution is based on an efficient adaptive ensembling of two EfficientNet-b0 models reaching 100% of accuracy, which, to our knowledge, outperforms the previous state-of-the-art models by at least 5%. The complexity is restrained by adopting specific design choices: ensembling with an adaptive combination layer, ensembling performed on the deep features, and minimal ensemble using two weak models only. In this way, the number of parameters has the same order of magnitude of a single EfficientNet-b0 and the computational cost (FLOPs) is reduced at least by 20%, doubled by parallelization. Moreover, a visual analysis of the saliency maps on sample images of all the classes of the dataset reveals where an inaccurate weak model focuses its attention versus an accurate one.

Funder

Tuscany Region

Publisher

MDPI AG

Subject

Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Kidney Abnormalities Prediction in Ultrasound Images using Transfer Learning Approach;2023 Second International Conference on Advances in Computational Intelligence and Communication (ICACIC);2023-12-07

2. Deep learning methods for point-of-care ultrasound examination;2023 17th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS);2023-11-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3