Precise Printing of Microfiber Scaffold with Gelatin Methacryloyl (GelMA)/Polyethylene Oxide (PEO) Bioink

Author:

Li Haibing1,Zhou Ruijian23456,Shu Qiang1,Xie Mingjun23456ORCID,He Yong3456ORCID

Affiliation:

1. Department of Paediatric Orthopaedics, The Children’s Hospital Zhejiang University School of Medicine, Hangzhou 310052, China

2. Department of Plastic and Reconstructive Surgery, Zhejiang Provincial People’s Hospital, Hangzhou Medical College, Hangzhou 310014, China

3. Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China

4. Key Laboratory of Materials Processing and Mold, Zhengzhou University, Zhengzhou 450002, China

5. Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China

6. Cancer Center, Zhejiang University, Hangzhou 310058, China

Abstract

Gelatin methacryloyl scaffolds with microscale fiber structures own great significance because they can effectively mimic the extracellular matrix environment. Compared with extruding bioprinting, electrospinning technology is more suitable for establishing accurate hydrogel microfibers. However, electrospinning accurate gelatin methacryloyl microfiber remains a big challenge restricted by its bad spinnability. In this paper, polyethylene oxide, which owns promising spinnability, is added into gelatin methacryloyl hydrogel precursor to improve the spinnability of gelatin methacryloyl bioink. A three-dimensional motion platform for electrospinning is designed and built and the spinning process of microfibers under far-electric-field and near-electric-field conditions is systematically studied, respectively. As a result, scaffolds consisted of unordered and ordered microfibers are successfully fabricated under far-electric-field and near-electric field, respectively. In vitro culture experiments of human umbilical vein endothelial cells are carried out using the prepared gelatin methacryloyl microfiber scaffolds. The results show that the cells can easily attach to the microfibers and grow well. Moreover, the gelatin methacryloyl/ polyethylene oxide microfiber scaffold was directly spun on the polycaprolactone mesh scaffold printed by fused modeling printing method. The results showed that the macroscopic ordered and microscopic disordered microfiber scaffold could be successfully established, which could lead to directed cell growth. We believe that this method can effectively solve the problem of hydrogel spinnability and be a powerful tool for various biomedical engineering methods in the future.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Science Fund for Creative Research Groups of the National Natural Science Foundation of China

Natural Science Foundation of Zhejiang Province

Publisher

MDPI AG

Subject

Bioengineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3