MultiResUNet3+: A Full-Scale Connected Multi-Residual UNet Model to Denoise Electrooculogram and Electromyogram Artifacts from Corrupted Electroencephalogram Signals

Author:

Hossain Md Shafayet1,Mahmud Sakib2ORCID,Khandakar Amith2ORCID,Al-Emadi Nasser2,Chowdhury Farhana Ahmed3,Mahbub Zaid Bin4ORCID,Reaz Mamun Bin Ibne15ORCID,Chowdhury Muhammad E. H.2ORCID

Affiliation:

1. Department of Electrical, Electronic and Systems Engineering, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia

2. Department of Electrical Engineering, Qatar University, Doha 2713, Qatar

3. Department of Electronics and Telecommunication Engineering, Rajshahi University of Engineering and Technology, Rajshahi 6204, Bangladesh

4. Department of Mathematics and Physics, North South University, Dhaka 1229, Bangladesh

5. Department of Electrical and Electronic Engineering, Independent University, Bashundhara, Dhaka 1229, Bangladesh

Abstract

Electroencephalogram (EEG) signals immensely suffer from several physiological artifacts, including electrooculogram (EOG), electromyogram (EMG), and electrocardiogram (ECG) artifacts, which must be removed to ensure EEG’s usability. This paper proposes a novel one-dimensional convolutional neural network (1D-CNN), i.e., MultiResUNet3+, to denoise physiological artifacts from corrupted EEG. A publicly available dataset containing clean EEG, EOG, and EMG segments is used to generate semi-synthetic noisy EEG to train, validate and test the proposed MultiResUNet3+, along with four other 1D-CNN models (FPN, UNet, MCGUNet, LinkNet). Adopting a five-fold cross-validation technique, all five models’ performance is measured by estimating temporal and spectral percentage reduction in artifacts, temporal and spectral relative root mean squared error, and average power ratio of each of the five EEG bands to whole spectra. The proposed MultiResUNet3+ achieved the highest temporal and spectral percentage reduction of 94.82% and 92.84%, respectively, in EOG artifacts removal from EOG-contaminated EEG. Moreover, compared to the other four 1D-segmentation models, the proposed MultiResUNet3+ eliminated 83.21% of the spectral artifacts from the EMG-corrupted EEG, which is also the highest. In most situations, our proposed model performed better than the other four 1D-CNN models, evident by the computed performance evaluation metrics.

Funder

Qatar National Research Foundation

North South University

Universiti Kebangsaan Malaysia

Publisher

MDPI AG

Subject

Bioengineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3