Unsupervised Learning-Based Non-Invasive Fetal ECG Muti-Level Signal Quality Assessment

Author:

Shi XintongORCID,Yamamoto Kohei,Ohtsuki Tomoaki,Matsui Yutaka,Owada Kazunari

Abstract

Objective: To monitor fetal health and growth, fetal heart rate is a critical indicator. The non-invasive fetal electrocardiogram is a widely employed measurement for fetal heart rate estimation, which is extracted from the electrodes placed on the surface of the maternal abdomen. The qualities of the fetal ECG recordings, however, are frequently affected by the noises from various interference sources. In general, the fetal heart rate estimates are unreliable when low-quality fetal ECG signals are used for fetal heart rate estimation, which makes accurate fetal heart rate estimation a challenging task. So, the signal quality assessment for the fetal ECG records is an essential step before fetal heart rate estimation. In other words, some low-quality fetal ECG signal segments are supposed to be detected and removed by utilizing signal quality assessment, so as to improve the accuracy of fetal heart rate estimation. A few supervised learning-based fetal ECG signal quality assessment approaches have been introduced and shown to accurately classify high- and low-quality fetal ECG signal segments, but large fetal ECG datasets with quality annotation are required in these methods. Yet, the labeled fetal ECG datasets are limited. Proposed methods: An unsupervised learning-based multi-level fetal ECG signal quality assessment approach is proposed in this paper for identifying three levels of fetal ECG signal quality. We extracted some features associated with signal quality, including entropy-based features, statistical features, and ECG signal quality indices. Additionally, an autoencoder-based feature is calculated, which is related to the reconstruction error of the spectrograms generated from fetal ECG signal segments. The high-, medium-, and low-quality fetal ECG signal segments are classified by inputting these features into a self-organizing map. Main results: The experimental results showed that our proposal achieved a weighted average F1-score of 90% in three-level fetal ECG signal quality classification. Moreover, with the acceptable removal of detected low-quality signal segments, the errors of fetal heart rate estimation were reduced to a certain extent.

Publisher

MDPI AG

Subject

Bioengineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3