The Application of Design Thinking in Developing a Deep Learning Algorithm for Hip Fracture Detection

Author:

Ouyang Chun-Hsiang1ORCID,Chen Chih-Chi2ORCID,Tee Yu-San1,Lin Wei-Cheng3ORCID,Kuo Ling-Wei1ORCID,Liao Chien-An1,Cheng Chi-Tung1ORCID,Liao Chien-Hung1

Affiliation:

1. Department of Trauma and Emergency Surgery, Chang Gung Memorial Hospital, Chang Gung University, Linkou, Taoyuan 33328, Taiwan

2. Department of Rehabilitation and Physical Medicine, Chang Gung Memorial Hospital, Chang Gung University, Linkou, Taoyuan 33328, Taiwan

3. Department of Electrical Engineering, Chang Gung University, Taoyuan 33327, Taiwan

Abstract

(1) Background: Design thinking is a problem-solving approach that has been applied in various sectors, including healthcare and medical education. While deep learning (DL) algorithms can assist in clinical practice, integrating them into clinical scenarios can be challenging. This study aimed to use design thinking steps to develop a DL algorithm that accelerates deployment in clinical practice and improves its performance to meet clinical requirements. (2) Methods: We applied the design thinking process to interview clinical doctors and gain insights to develop and modify the DL algorithm to meet clinical scenarios. We also compared the DL performance of the algorithm before and after the integration of design thinking. (3) Results: After empathizing with clinical doctors and defining their needs, we identified the unmet need of five trauma surgeons as “how to reduce the misdiagnosis of femoral fracture by pelvic plain film (PXR) at initial emergency visiting”. We collected 4235 PXRs from our hospital, of which 2146 had a hip fracture (51%) from 2008 to 2016. We developed hip fracture DL detection models based on the Xception convolutional neural network by using these images. By incorporating design thinking, we improved the diagnostic accuracy from 0.91 (0.84–0.96) to 0.95 (0.93–0.97), the sensitivity from 0.97 (0.89–1.00) to 0.97 (0.94–0.99), and the specificity from 0.84 (0.71–0.93) to 0.93(0.990–0.97). (4) Conclusions: In summary, this study demonstrates that design thinking can ensure that DL solutions developed for trauma care are user-centered and meet the needs of patients and healthcare providers.

Funder

National Science and Technology Council, Taiwan

Chang Gung Memorial Hospital

Publisher

MDPI AG

Subject

Bioengineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3