Multi-Parameter Auto-Tuning Algorithm for Mass Spectrometer Based on Improved Particle Swarm Optimization

Author:

Jia Mingzheng12ORCID,Li Liang3,Xiong Baolin12,Feng Le3,Cheng Wenbo23,Dong Wen-Fei12ORCID

Affiliation:

1. School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China

2. Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China

3. Tianjin Key Laboratory of Medical Mass Spectrometry for Accurate Diagnosis, Tianjin 300399, China

Abstract

Quadrupole mass spectrometers (QMS) are widely used for clinical diagnosis and chemical analysis. To obtain the best experimental results, mass spectrometers must be calibrated to an ideal setting before use. However, tuning the current QMS is challenging. Traditional tuning techniques possess low automation levels and rely primarily on skilled engineers. Therefore, in this study, we propose an innovative auto-tuning algorithm for QMS based on the improved particle swarm optimization (PSO) algorithm to automatically find the optimal solution of QMS parameters and make the QMS reach the optimal state. The improved PSO algorithm is combined with simulated annealing, multiple inertia weights, dynamic boundaries, and other methods to prevent the traditional PSO algorithm from the issue of a local optimal solution and premature convergence. According to the characteristics of the mass spectrum peaks, a termination function is proposed to simplify the termination conditions of the PSO algorithm and further improve the automation level of the mass spectrometer. The results of auto-calibration testing of resolution and mass axis show that both resolution and mass axis calibration could effectively meet the requirements of mass spectrometry experiments. By the experiment of auto-optimization testing of lens and ion source parameters, these parameters were all in the vicinity of the optimal solution, which achieved the expected performance. Through numerous experiments, the reproducibility of the algorithm was established as meeting the auto-tuning function of the QMS. The proposed method can automatically tune the mass spectrometer from its non-optimal condition to the optimal one, which can effectively reduce the tuning difficulty of QMS.

Funder

National Key R&D Program of China

Publisher

MDPI AG

Subject

Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3