Optimized Solutions of Electrocardiogram Lead and Segment Selection for Cardiovascular Disease Diagnostics

Author:

Shi Jiguang1,Li Zhoutong2,Liu Wenhan1,Zhang Huaicheng1ORCID,Guo Qianxi1,Chang Sheng1ORCID,Wang Hao1,He Jin1,Huang Qijun1ORCID

Affiliation:

1. School of Physics and Technology, Wuhan University, Wuhan 430072, China

2. Huangpu Branch of Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China

Abstract

Most of the existing multi-lead electrocardiogram (ECG) detection methods are based on all 12 leads, which undoubtedly results in a large amount of calculation and is not suitable for the application in portable ECG detection systems. Moreover, the influence of different lead and heartbeat segment lengths on the detection is not clear. In this paper, a novel Genetic Algorithm-based ECG Leads and Segment Length Optimization (GA-LSLO) framework is proposed, aiming to automatically select the appropriate leads and input ECG length to achieve optimized cardiovascular disease detection. GA-LSLO extracts the features of each lead under different heartbeat segment lengths through the convolutional neural network and uses the genetic algorithm to automatically select the optimal combination of ECG leads and segment length. In addition, the lead attention module (LAM) is proposed to weight the features of the selected leads, which improves the accuracy of cardiac disease detection. The algorithm is validated on the ECG data from the Huangpu Branch of Shanghai Ninth People’s Hospital (defined as the SH database) and the open-source Physikalisch-Technische Bundesanstalt diagnostic ECG database (PTB database). The accuracy for detection of arrhythmia and myocardial infarction under the inter-patient paradigm is 99.65% (95% confidence interval: 99.20–99.76%) and 97.62% (95% confidence interval: 96.80–98.16%), respectively. In addition, ECG detection devices are designed using Raspberry Pi, which verifies the convenience of hardware implementation of the algorithm. In conclusion, the proposed method achieves good cardiovascular disease detection performance. It selects the ECG leads and heartbeat segment length with the lowest algorithm complexity while ensuring classification accuracy, which is suitable for portable ECG detection devices.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3