Fast Blue and Cholera Toxin-B Survival Guide for Alpha-Motoneurons Labeling: Less Is Better in Young B6SJL Mice, but More Is Better in Aged C57Bl/J Mice

Author:

Farid Hasan1,Gelford Weston2,Goss Lori1,Garrett Teresa1,Elbasiouny Sherif12ORCID

Affiliation:

1. Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, College of Science and Mathematics, Wright State University, Dayton, OH 45435, USA

2. Department of Biomedical, Industrial, and Human Factors Engineering, College of Engineering and Computer Science, Wright State University, Dayton, OH 45435, USA

Abstract

Fast Blue (FB) and Cholera Toxin-B (CTB) are two retrograde tracers extensively used to label alpha-motoneurons (α-MNs). The overall goals of the present study were to (1) assess the effectiveness of different FB and CTB protocols in labeling α-MNs, (2) compare the labeling quality of these tracers at standard concentrations reported in the literature (FB 2% and CTB 0.1%) versus lower concentrations to overcome tracer leakage, and (3) determine an optimal protocol for labeling α-MNs in young B6SJL and aged C57Bl/J mice (when axonal transport is disrupted by aging). Hindlimb muscles of young B6SJL and aged C57Bl/J mice were intramuscularly injected with different FB or CTB concentrations and then euthanized at either 3 or 5 days after injection. Measurements were performed to assess labeling quality via seven different parameters. Our results show that tracer protocols of lower concentration and shorter labeling durations were generally better in labeling young α-MNs, whereas tracer protocols of higher tracer concentration and longer labeling durations were generally better in labeling aged α-MNs. A 0.2%, 3-day FB protocol provided optimal labeling of young α-MNs without tracer leakage, whereas a 2%, 5-day FB protocol or 0.1% CTB protocol provided optimal labeling of aged α-MNs. These results inform future studies on the selection of optimal FB and CTB protocols for α-MNs labeling in normal, aging, and neurodegenerative disease conditions.

Funder

National Institute of Neurological Disorders and Stroke

National Institute on Aging

National Academy of Sciences (NAS) and the United States Agency for International Development

Publisher

MDPI AG

Subject

Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3