Finite Element Analysis of Head–Neck Kinematics in Rear-End Impact Conditions with Headrest

Author:

Wang Yuan12,Jiang Hanhui12,Teo Ee Chon12,Gu Yaodong12ORCID

Affiliation:

1. Faculty of Sports Science, Ningbo University, Ningbo 315211, China

2. Research Academy of Grand Health, Ningbo University, Ningbo 315211, China

Abstract

A detailed three-dimensional (3D) head–neck (C0–C7) finite element (FE) model was developed and used to dictate the motions of each cervical spinal segment under static physiological loadings of flexion and extension with a magnitude of 1.0 Nm and rear-end impacts. In this dynamic study, a rear-end impact pulse was applied to C7 to create accelerations of 4.5 G and 8.5 G. The predicted segmental motions and displacements of the head were in agreement with published results under physiological loads of 1.0 Nm. Under rear-end impact conditions, the effects of peak pulse acceleration and headrest angles on the kinematic responses of the head–neck complex showed rates of increase/decrease in the rotational motion of various cervical spinal segments that were different in the first 200 ms. The peak flexion rotation of all segments was lower than the combined ROM of flexion and extension. The peak extension rotation of all segments showed variation compared to the combined ROM of flexion and extension depending on G and the headrest angle. A higher acceleration of C7 increased the peak extension angle of lower levels, but the absolute increase was restricted by the distance between the head and the headrest. A change in the headrest angle from 45° to 30° resulted in a change in extension rotation at the lower C5–C6 segments to flexion rotation, which further justified the effectiveness of having distance between the head and the headrest. This study shows that the existing C0-C7 FE model is efficient at defining the gross reactions of the human cervical spine under both physiological static and simulated whiplash circumstances. The fast rate of changes in flexion and extension rotation of various segments may result in associated soft tissues and bony structures experiencing tolerances beyond their material characteristic limits. It is suggested that a proper location and angle of the headrest could effectively prevent the cervical spine from injury in traumatic vehicular accidents.

Publisher

MDPI AG

Subject

Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3