A Fermentation State Marker Rule Design Task in Metabolic Engineering

Author:

Stalidzans Egils1ORCID,Muiznieks Reinis1ORCID,Dubencovs Konstantins23,Sile Elina2ORCID,Berzins Kristaps1,Suleiko Arturs23,Vanags Juris23

Affiliation:

1. Institute of Microbiology and Biotechnology, University of Latvia, Jelgavas Street 1, LV-1004 Riga, Latvia

2. Bioreactors.net AS, Dzerbenes Street 27, LV-1006 Riga, Latvia

3. Laboratory of Bioengineering, Latvian State Institute of Wood Chemistry, Dzerbenes Street 27, LV-1006 Riga, Latvia

Abstract

There are several ways in which mathematical modeling is used in fermentation control, but mechanistic mathematical genome-scale models of metabolism within the cell have not been applied or implemented so far. As part of the metabolic engineering task setting, we propose that metabolite fluxes and/or biomass growth rate be used to search for a fermentation steady state marker rule. During fermentation, the bioreactor control system can automatically detect the desired steady state using a logical marker rule. The marker rule identification can be also integrated with the production growth coupling approach, as presented in this study. A design of strain with marker rule is demonstrated on genome scale metabolic model iML1515 of Escherichia coli MG1655 proposing two gene deletions enabling a measurable marker rule for succinate production using glucose as a substrate. The marker rule example at glucose consumption 10.0 is: IF (specific growth rate μ is above 0.060 h−1, AND CO2 production under 1.0, AND ethanol production above 5.5), THEN succinate production is within the range 8.2–10, where all metabolic fluxes units are mmol ∗ gDW−1 ∗ h−1. An objective function for application in metabolic engineering, including productivity features and rule detecting sensor set characterizing parameters, is proposed. Two-phase approach to implementing marker rules in the cultivation control system is presented to avoid the need for a modeler during production.

Funder

European Regional Development Fund

Publisher

MDPI AG

Subject

Bioengineering

Reference39 articles.

1. González-Figueredo, C., Alejandro Flores-Estrella, R., and Rojas-Rejón, O.A. (2019). Current Topics in Biochemical Engineering, IntechOpen.

2. Gargalo, C.L., Lopez, P.C., Hasanzadeh, A., Udugama, I.A., and Gernaey, K.V. (2022). Current Developments in Biotechnology and Bioengineering, Elsevier.

3. Zhu, X., Rehman, K.U., Wang, B., and Shahzad, M. (2020). Modern Soft-Sensing Modeling Methods for Fermentation Processes. Sensors, 20.

4. Generalization of Monod Kinetics for Analysis of Growth Data with Substrfate Inhibition;Luong;Biotechnol. Bioeng.,1987

5. The Growth of Bacterial Cultures;Monod;Annu. Rev. Microbiol.,1949

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3