Biomechanical Behavior of Dynamic vs. Static Distal Locking Intramedullary Nails in Subtrochanteric Femur Fractures

Author:

Martínez-Aznar Carmen1,Mateo Jesús2ORCID,Ibarz Elena34,Gracia Luis34,Rosell Jorge3ORCID,Puértolas Sergio34ORCID

Affiliation:

1. Department of Orthopaedic Surgery and Traumatology, Reina Sofía Hospital, 31500 Tudela, Spain

2. Department of Orthopaedic Surgery and Traumatology, Miguel Servet University Hospital, 50009 Zaragoza, Spain

3. Department of Mechanical Engineering, University of Zaragoza, 50018 Zaragoza, Spain

4. Aragón Institute for Engineering Research, 50018 Zaragoza, Spain

Abstract

Objective: Hip fractures are one of the most frequent fractures presenting to the emergency department and orthopedic trauma teams. The aim of this study was to determine the best indication and therapeutic technique for subtrochanteric fractures and unifying criteria when choosing the most suitable type of nail. Materials and methods: To analyze the influence of the material and the type of distal locking of intramedullary nails (static or dynamic), a femur model with a fracture in the subtrochanteric region stabilized with a long Gamma intramedullary nail was applied using finite element method (FEM) simulation. Results: The mechanical study shows that titanium nails allow for greater micromobility at the fracture site, which could act as a stimulus for the formation of callus and consolidation of the fracture. In the mechanical study, the type of distal locking mainly affects mobility at the fracture site and stress in the cortical bone around the distal screws, without in any case exceeding values that may compromise the viability of the assembly or that may result in detrimental effects (in terms of mobility at the fracture site) for the consolidation process. Conclusion: Subtrochanteric fractures treated with titanium nail and static distal locking is safe and does not hinder consolidation.

Funder

Department of Science, University and Knowledge Society of the Government of Aragon, Spain

Publisher

MDPI AG

Subject

Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3