PPG2ECGps: An End-to-End Subject-Specific Deep Neural Network Model for Electrocardiogram Reconstruction from Photoplethysmography Signals without Pulse Arrival Time Adjustments

Author:

Tang Qunfeng12ORCID,Chen Zhencheng1ORCID,Ward Rabab2ORCID,Menon Carlo3ORCID,Elgendi Mohamed23ORCID

Affiliation:

1. School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China

2. Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC V6T 1Z1, Canada

3. Biomedical and Mobile Health Technology Lab, Department of Health Sciences and Technology, ETH Zurich, 8008 Zurich, Switzerland

Abstract

Electrocardiograms (ECGs) provide crucial information for evaluating a patient’s cardiovascular health; however, they are not always easily accessible. Photoplethysmography (PPG), a technology commonly used in wearable devices such as smartwatches, has shown promise for constructing ECGs. Several methods have been proposed for ECG reconstruction using PPG signals, but some require signal alignment during the training phase, which is not feasible in real-life settings where ECG signals are not collected at the same time as PPG signals. To address this challenge, we introduce PPG2ECGps, an end-to-end, patient-specific deep-learning neural network utilizing the W-Net architecture. This novel approach enables direct ECG signal reconstruction from PPG signals, eliminating the need for signal alignment. Our experiments show that the proposed model achieves mean values of 0.977 mV for Pearson’s correlation coefficient, 0.037 mV for the root mean square error, and 0.010 mV for the normalized dynamic time-warped distance when comparing reconstructed ECGs to reference ECGs from a dataset of 500 records. As PPG signals are more accessible than ECG signals, our proposed model has significant potential to improve patient monitoring and diagnosis in healthcare settings via wearable devices.

Funder

NSERC

Canada Research Chairs (CRC) program

Guilin University of Electronic Technology

NSFC

Guangxi Innovation Driven Development Project

GUET Graduate Education

Publisher

MDPI AG

Subject

Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3