Automatic Segmentation and Quantification of Abdominal Aortic Calcification in Lateral Lumbar Radiographs Based on Deep-Learning-Based Algorithms

Author:

Wang Kexin12ORCID,Wang Xiaoying1,Xi Zuqiang3,Li Jialun3,Zhang Xiaodong1,Wang Rui1

Affiliation:

1. Department of Radiology, Peking University First Hospital, Beijing 100034, China

2. School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China

3. Beijing Smart Tree Medical Technology Co., Ltd., Beijing 102200, China

Abstract

To investigate the performance of deep-learning-based algorithms for the automatic segmentation and quantification of abdominal aortic calcification (AAC) in lateral lumbar radiographs, we retrospectively collected 1359 consecutive lateral lumbar radiographs. The data were randomly divided into model development and hold-out test datasets. The model development dataset was used to develop U-shaped fully convolutional network (U-Net) models to segment the landmarks of vertebrae T12–L5, the aorta, and anterior and posterior aortic calcifications. The AAC lengths were calculated, resulting in an automatic Kauppila score output. The vertebral levels, AAC scores, and AAC severity were obtained from clinical reports and analyzed by an experienced expert (reference standard) and the model. Compared with the reference standard, the U-Net model demonstrated a good performance in predicting the total AAC score in the hold-out test dataset, with a correlation coefficient of 0.97 (p <0.001). The overall accuracy for the AAC severity was 0.77 for the model and 0.74 for the clinical report. Additionally, the Kendall coefficient of concordance of the total AAC score prediction was 0.89 between the model-predicted score and the reference standard, and 0.88 between the structured clinical report and the reference standard. In conclusion, the U-Net-based deep learning approach demonstrated a relatively high model performance in automatically segmenting and quantifying ACC.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3