Body Composition and Demographic Features Do Not Affect the Diagnostic Accuracy of Shear Wave Elastography

Author:

Varol Umut1ORCID,Valera-Calero Juan Antonio23ORCID,Fernández-de-las-Peñas César45ORCID,Buffet-García Jorge6ORCID,Plaza-Manzano Gustavo23ORCID,Navarro-Santana Marcos José23ORCID

Affiliation:

1. Escuela Internacional de Doctorado, Universidad Rey Juan Carlos, 28922 Alcorcón, Spain

2. Department of Radiology, Rehabilitation and Physiotherapy, Faculty of Nursery, Physiotherapy and Podiatry, Complutense University of Madrid, 28040 Madrid, Spain

3. Grupo InPhysio, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain

4. Cátedra Institucional en Docencia, Clínica e Investigación en Fisioterapia: Terapia Manual, Punción Seca y Ejercicio Terapéutico, Universidad Rey Juan Carlos, 28922 Alcorcón, Spain

5. Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Universidad Rey Juan Carlos, 28922 Alcorcón, Spain

6. Faculty of Health Sciences, Universidad Francisco de Vitoria, 28223 Pozuelo de Alarcón, Spain

Abstract

Shear-wave elastography (SWE) is an imaging method that can be used to estimate shear wave speed and the Young’s modulus based on the measured shear wave speed under certain conditions. Up to date, no research has analyzed whether body composition factors contribute to ultrasound attenuation, refraction, reflection, and, consequently, SWE measurement errors. Therefore, this study aimed to analyze the association between demographic and body composition features with SWE errors for assessing the anterior scalene stiffness (which is a key structure in patients with neck pain and nerve compressive syndromes). Demographic (sex, age, height, weight, and body mass index), body composition (water volume, fat mass, and lean mass), and anterior scalene muscle stiffness (Young’s modulus and shear wave speed) data were collected from a sample of asymptomatic subjects. After calculating the absolute SWE differences between trials and the reliability estimates, a correlation matrix was generated to quantify the association among all the variables. A total of 34 asymptomatic subjects (24 males) were included in the analyses. Test–retest reliability was excellent for assessing the Young’s modulus and shear wave velocity (ICC = 0.912 and 0.923, respectively). No significant associations were found between age, height, weight, body mass index, body fat, lean mass, or water volume with SWE errors (p > 0.05). However, the Young’s modulus error was associated with the stiffness properties (p < 0.01), whereas shear wave speed was associated with none of them (all, p > 0.05). A detailed procedure can reliably assess the AS muscle stiffness. None of the sociodemographic or body composition features assessed were correlated with SWE errors. However, baseline stiffness seems to be associated with Young’s modulus error.

Publisher

MDPI AG

Subject

Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3