Visual Blood, a 3D Animated Computer Model to Optimize the Interpretation of Blood Gas Analysis

Author:

Schweiger Giovanna1ORCID,Malorgio Amos1,Henckert David1,Braun Julia2ORCID,Meybohm Patrick3ORCID,Hottenrott Sebastian3ORCID,Froehlich Corinna3,Zacharowski Kai4,Raimann Florian J.4ORCID,Piekarski Florian4ORCID,Noethiger Christoph B.1ORCID,Spahn Donat R.1ORCID,Tscholl David W.1ORCID,Roche Tadzio R.1ORCID

Affiliation:

1. Department of Anaesthesiology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland

2. Departments of Epidemiology and Biostatistics, Epidemiology, Biostatistics and Prevention Institute, University of Zurich, 8006 Zurich, Switzerland

3. Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Wuerzburg, University of Wuerzburg, 97080 Wuerzburg, Germany

4. Department of Anaesthesiology, Intensive Care Medicine, and Pain Therapy, University Hospital Frankfurt, Goethe University Frankfurt, 60590 Frankfurt, Germany

Abstract

Acid–base homeostasis is crucial for all physiological processes in the body and is evaluated using arterial blood gas (ABG) analysis. Screens or printouts of ABG results require the interpretation of many textual elements and numbers, which may delay intuitive comprehension. To optimise the presentation of the results for the specific strengths of human perception, we developed Visual Blood, an animated virtual model of ABG results. In this study, we compared its performance with a conventional result printout. Seventy physicians from three European university hospitals participated in a computer-based simulation study. Initially, after an educational video, we tested the participants’ ability to assign individual Visual Blood visualisations to their corresponding ABG parameters. As the primary outcome, we tested caregivers’ ability to correctly diagnose simulated clinical ABG scenarios with Visual Blood or conventional ABG printouts. For user feedback, participants rated their agreement with statements at the end of the study. Physicians correctly assigned 90% of the individual Visual Blood visualisations. Regarding the primary outcome, the participants made the correct diagnosis 86% of the time when using Visual Blood, compared to 68% when using the conventional ABG printout. A mixed logistic regression model showed an odds ratio for correct diagnosis of 3.4 (95%CI 2.00–5.79, p < 0.001) and an odds ratio for perceived diagnostic confidence of 1.88 (95%CI 1.67–2.11, p < 0.001) in favour of Visual Blood. A linear mixed model showed a coefficient for perceived workload of −3.2 (95%CI −3.77 to −2.64) in favour of Visual Blood. Fifty-one of seventy (73%) participants agreed or strongly agreed that Visual Blood was easy to use, and fifty-five of seventy (79%) agreed that it was fun to use. In conclusion, Visual Blood improved physicians’ ability to diagnose ABG results. It also increased perceived diagnostic confidence and reduced perceived workload. This study adds to the growing body of research showing that decision-support tools developed around human cognitive abilities can streamline caregivers’ decision-making and may improve patient care.

Publisher

MDPI AG

Subject

Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3