Prediction of Sleep Apnea Events Using a CNN–Transformer Network and Contactless Breathing Vibration Signals

Author:

Chen Yuhang12,Yang Shuchen3,Li Huan45,Wang Lirong6ORCID,Wang Bidou2

Affiliation:

1. School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China

2. Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China

3. Shanghai Yueyang Medtech Co., Shanghai 200131, China

4. Department of Sleep Medical Center, Beijing Anzhen Hospital, Capital Medical University, No. 2 Anzhen Road, Beijing 100029, China

5. Department of Ultrasound, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, China

6. School of Electronics and Information Technology, Soochow University, Suzhou 215006, China

Abstract

It is estimated that globally 425 million subjects have moderate to severe obstructive sleep apnea (OSA). The accurate prediction of sleep apnea events can offer insight into the development of treatment therapies. However, research related to this prediction is currently limited. We developed a covert framework for the prediction of sleep apnea events based on low-frequency breathing-induced vibrations obtained from piezoelectric sensors. A CNN-transformer network was utilized to efficiently extract local and global features from respiratory vibration signals for accurate prediction. Our study involved overnight recordings of 105 subjects. In five-fold cross-validation, we achieved an accuracy of 85.9% and an F1 score of 85.8%, which are 3.5% and 5.3% higher than the best-performed classical model, respectively. Additionally, in leave-one-out cross-validation, 2.3% and 3.8% improvements are observed, respectively. Our proposed CNN-transformer model is effective in the prediction of sleep apnea events. Our framework can thus provide a new perspective for improving OSA treatment modes and clinical management.

Funder

National Key R&D Program of China

Publisher

MDPI AG

Subject

Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3