An Improved Canonical Correlation Analysis for EEG Inter-Band Correlation Extraction

Author:

Wang Zishan123ORCID,Huang Ruqiang3,Yan Ye23,Luo Zhiguo23,Zhao Shaokai23,Wang Bei1,Jin Jing1,Xie Liang23,Yin Erwei23

Affiliation:

1. School of Information Science and Engineering, East China University of Science and Technology, Shanghai 200030, China

2. Defense Innovation Institute, Academy of Military Sciences (AMS), Beijing 100000, China

3. Tianjin Artificial Intelligence Innovation Center (TAIIC), Tianjin 300450, China

Abstract

(1) Background: Emotion recognition based on EEG signals is a rapidly growing and promising research field in affective computing. However, traditional methods have focused on single-channel features that reflect time-domain or frequency-domain information of the EEG, as well as bi-channel features that reveal channel-wise relationships across brain regions. Despite these efforts, the mechanism of mutual interactions between EEG rhythms under different emotional expressions remains largely unexplored. Currently, the primary form of information interaction between EEG rhythms is phase–amplitude coupling (PAC), which results in computational complexity and high computational cost. (2) Methods: To address this issue, we proposed a method of extracting inter-bands correlation (IBC) features via canonical correlation analysis (CCA) based on differential entropy (DE) features. This approach eliminates the need for surrogate testing and reduces computational complexity. (3) Results: Our experiments verified the effectiveness of IBC features through several tests, demonstrating that the more correlated features between EEG frequency bands contribute more to emotion classification accuracy. We then fused IBC features and traditional DE features at the decision level, which significantly improved the accuracy of emotion recognition on the SEED dataset and the local CUMULATE dataset compared to using a single feature alone. (4) Conclusions: These findings suggest that IBC features are a promising approach to promoting emotion recognition accuracy. By exploring the mutual interactions between EEG rhythms under different emotional expressions, our method can provide valuable insights into the underlying mechanisms of emotion processing and improve the performance of emotion recognition systems.

Funder

National Natural Science Foundation of China

STI 2030-major projects

Shanghai Municipal Science and Technology Major Project

Program of Introducing Talents of Discipline to Universities through the 111 Project

National Government GuidedSpecial Funds for Local Science and Technology Development

Project of Jiangsu Province Science and Technology Plan Special Fund in 2022

Publisher

MDPI AG

Subject

Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3