ECG Measurement Uncertainty Based on Monte Carlo Approach: An Effective Analysis for a Successful Cardiac Health Monitoring System

Author:

Silva Jackson Henrique Braga da,Cortez Paulo Cesar,Jagatheesaperumal Senthil K.ORCID,de Albuquerque Victor Hugo C.ORCID

Abstract

Measurement uncertainty is one of the widespread concepts applied in scientific works, particularly to estimate the accuracy of measurement results and to evaluate the conformity of products and processes. In this work, we propose a methodology to analyze the performance of measurement systems existing in the design phases, based on a probabilistic approach, by applying the Monte Carlo method (MCM). With this approach, it is feasible to identify the dominant contributing factors of imprecision in the evaluated system. In the design phase, this information can be used to identify where the most effective attention is required to improve the performance of equipment. This methodology was applied over a simulated electrocardiogram (ECG), for which a measurement uncertainty of the order of 3.54% of the measured value was estimated, with a confidence level of 95%. For this simulation, the ECG computational model was categorized into two modules: the preamplifier and the final stage. The outcomes of the analysis show that the preamplifier module had a greater influence on the measurement results over the final stage module, which indicates that interventions in the first module would promote more significant performance improvements in the system. Finally, it was identified that the main source of ECG measurement uncertainty is related to the measurand, focused towards the objective of better characterization of the metrological behavior of the measurements in the ECG.

Funder

National Council for Scientific and Technological Development

Publisher

MDPI AG

Subject

Bioengineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3