Response to Mechanical Properties and Physiological Challenges of Fascia: Diagnosis and Rehabilitative Therapeutic Intervention for Myofascial System Disorders

Author:

Kodama Yuya1,Masuda Shin1,Ohmori Toshinori1,Kanamaru Akihiro1,Tanaka Masato1ORCID,Sakaguchi Tomoyoshi2ORCID,Nakagawa Masami2

Affiliation:

1. Department of Orthopaedic Surgery, Okayama Rosai Hospital, 1-10-25 Midorimachi, Minamiku, Okayama 702-8055, Japan

2. Department of Central Rehabilitation, Okayama Rosai Hospital, 1-10-25 Midorimachi, Minamiku, Okayama 702-8055, Japan

Abstract

Damage to the fascia can cause significant performance deficits in high-performance sports and recreational exercise and may contribute to the development of musculoskeletal disorders and persistent potential pain. The fascia is widely distributed from head to toe, encompassing muscles, bones, blood vessels, nerves, and internal organs and comprising various layers of different depths, indicating the complexity of its pathogenesis. It is a connective tissue composed of irregularly arranged collagen fibers, distinctly different from the regularly arranged collagen fibers found in tendons, ligaments, or periosteum, and mechanical changes in the fascia (stiffness or tension) can produce changes in its connective tissue that can cause pain. While these mechanical changes induce inflammation associated with mechanical loading, they are also affected by biochemical influences such as aging, sex hormones, and obesity. Therefore, this paper will review the current state of knowledge on the molecular level response to the mechanical properties of the fascia and its response to other physiological challenges, including mechanical changes, innervation, injury, and aging; imaging techniques available to study the fascial system; and therapeutic interventions targeting fascial tissue in sports medicine. This article aims to summarize contemporary views.

Publisher

MDPI AG

Subject

Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3