In-Silico and In-Vitro Analysis of the Novel Hybrid Comprehensive Stage II Operation for Single Ventricle Circulation

Author:

Das Arka1ORCID,Hameed Marwan2ORCID,Prather Ray134,Farias Michael45,Divo Eduardo1ORCID,Kassab Alain3,Nykanen David45,DeCampli William45ORCID

Affiliation:

1. Department of Mechanical Engineering, Embry-Riddle Aeronautical University, Daytona Beach, FL 32114, USA

2. Department of Mechanical Engineering, American University of Bahrain, Riffa 942, Bahrain

3. Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32816, USA

4. The Heart Center at Orlando Health Arnold Palmer Hospital for Children, Orlando, FL 32806, USA

5. Department of Clinical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA

Abstract

Single ventricle (SV) anomalies account for one-fourth of all congenital heart disease cases. The existing palliative treatment for this anomaly achieves a survival rate of only 50%. To reduce the trauma associated with surgical management, the hybrid comprehensive stage II (HCSII) operation was designed as an alternative for a select subset of SV patients with the adequate antegrade aortic flow. This study aims to provide better insight into the hemodynamics of HCSII patients utilizing a multiscale Computational Fluid Dynamics (CFD) model and a mock flow loop (MFL). Both 3D-0D loosely coupled CFD and MFL models have been tuned to match baseline hemodynamic parameters obtained from patient-specific catheterization data. The hemodynamic findings from clinical data closely match the in-vitro and in-silico measurements and show a strong correlation (r = 0.9). The geometrical modification applied to the models had little effect on the oxygen delivery. Similarly, the particle residence time study reveals that particles injected in the main pulmonary artery (MPA) have successfully ejected within one cardiac cycle, and no pathological flows were observed.

Funder

American Heart Association

Publisher

MDPI AG

Subject

Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3