Compression of Bio-Signals Using Block-Based Haar Wavelet Transform and COVIDOA for IoMT Systems

Author:

Khafaga Doaa Sami1ORCID,Aldakheel Eman Abdullah1ORCID,Khalid Asmaa M.2ORCID,Hamza Hanaa M.2,Hosny Khaid M.2ORCID

Affiliation:

1. Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia

2. Information Technology Department, Faculty of Computers & Informatics, Zagazig University, Zagazig 44519, Egypt

Abstract

Background: Bio-signals are the essential data that smart healthcare systems require for diagnosing and treating common diseases. However, the amount of these signals that need to be processed and analyzed by healthcare systems is huge. Dealing with such a vast amount of data presents difficulties, such as the need for high storage and transmission capabilities. In addition, retaining the most useful clinical information in the input signal is essential while applying compression. Methods: This paper proposes an algorithm for the efficient compression of bio-signals for IoMT applications. This algorithm extracts the features of the input signal using block-based HWT and then selects the most important features for reconstruction using the novel COVIDOA. Results: We utilized two different public datasets for evaluation: MIT-BIH arrhythmia and EEG Motor Movement/Imagery, for ECG and EEG signals, respectively. The proposed algorithm’s average values for CR, PRD, NCC, and QS are 18.06, 0.2470, 0.9467, and 85.366 for ECG signals and 12.6668, 0.4014, 0.9187, and 32.4809 for EEG signals. Further, the proposed algorithm shows its efficiency over other existing techniques regarding processing time. Conclusions: Experiments show that the proposed method successfully achieved a high CR while maintaining an excellent level of signal reconstruction in addition to its reduced processing time compared with the existing techniques.

Funder

Princess Nourah bint Abdulrahman University

Publisher

MDPI AG

Subject

Bioengineering

Reference34 articles.

1. Smart healthcare: Making medical care more intelligent;Tian;Glob. Health J.,2019

2. Techniques of EMG signal analysis: Detection, processing, classification, and applications;Reaz;Biol. Proced. Online,2006

3. ECG signals classification: A review;Houssein;Int. J. Intell. Eng. Inform.,2017

4. Nagel, S. (2019). Towards a Home-Use BCI: Fast Asynchronous Control and Robust Non-Control State Detection. [Ph.D. Thesis, Universität Tübingen].

5. A design characteristics of smart healthcare system as the IoT application;Jeong;Indian J. Sci. Technol.,2016

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3