A Real-Time Control Method for Upper Limb Exoskeleton Based on Active Torque Prediction Model

Author:

Li Sujiao123,Zhang Lei12ORCID,Meng Qiaoling123ORCID,Yu Hongliu123

Affiliation:

1. Institute of Rehabilitation Engineering and Technology, University of Shanghai for Science and Technology, Shanghai 200093, China

2. Shanghai Engineering Research Center of Assistive Devices, Shanghai 200093, China

3. Key Laboratory of Neural-Functional Information and Rehabilitation Engineering of the Ministry of Civil Affairs, Shanghai 200093, China

Abstract

Exoskeleton rehabilitation robots have been widely used in the rehabilitation treatment of stroke patients. Clinical studies confirmed that rehabilitation training with active movement intentions could improve the effectiveness of rehabilitation treatment significantly. This research proposes a real-time control method for an upper limb exoskeleton based on the active torque prediction model. To fulfill the goal of individualized and precise rehabilitation, this method has an adjustable parameter assist ratio that can change the strength of the assist torque under the same conditions. In this study, upper limb muscles’ EMG signals and elbow angle were chosen as the sources of control signals. The active torque prediction model was then trained using a BP neural network after appropriately extracting features. The model exhibited good accuracy on PC and embedded systems, according to the experimental results. In the embedded system, the RMSE of this model was 0.1956 N·m and 94.98%. In addition, the proposed real-time control system also had an extremely low delay of only 40 ms, which would significantly increase the adaptability of human–computer interactions.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3