A New Medical Analytical Framework for Automated Detection of MRI Brain Tumor Using Evolutionary Quantum Inspired Level Set Technique

Author:

Darwish Saad M.1ORCID,Abu Shaheen Lina J.2,Elzoghabi Adel A.1

Affiliation:

1. Department of Information Technology, Institute of Graduate Studies and Research, Alexandria University, 163 Horreya Avenue, El Shatby 21526, Alexandria P.O. Box 832, Egypt

2. Department of Computer Information Systems, College of Technology and Applied Sciences, Al-Quds Open University, Deir AL Balah P920, Palestine

Abstract

Segmenting brain tumors in 3D magnetic resonance imaging (3D-MRI) accurately is critical for easing the diagnostic and treatment processes. In the field of energy functional theory-based methods for image segmentation and analysis, level set methods have emerged as a potent computational approach that has greatly aided in the advancement of the geometric active contour model. An important factor in reducing segmentation error and the number of required iterations when using the level set technique is the choice of the initial contour points, both of which are important when dealing with the wide range of sizes, shapes, and structures that brain tumors may take. To define the velocity function, conventional methods simply use the image gradient, edge strength, and region intensity. This article suggests a clustering method influenced by the Quantum Inspired Dragonfly Algorithm (QDA), a metaheuristic optimizer inspired by the swarming behaviors of dragonflies, to accurately extract initial contour points. The proposed model employs a quantum-inspired computing paradigm to stabilize the trade-off between exploitation and exploration, thereby compensating for any shortcomings of the conventional DA-based clustering method, such as slow convergence or falling into a local optimum. To begin, the quantum rotation gate concept can be used to relocate a colony of agents to a location where they can better achieve the optimum value. The main technique is then given a robust local search capacity by adopting a mutation procedure to enhance the swarm’s mutation and realize its variety. After a preliminary phase in which the cranium is disembodied from the brain, tumor contours (edges) are determined with the help of QDA. An initial contour for the MRI series will be derived from these extracted edges. The final step is to use a level set segmentation technique to isolate the tumor area across all volume segments. When applied to 3D-MRI images from the BraTS’ 2019 dataset, the proposed technique outperformed state-of-the-art approaches to brain tumor segmentation, as shown by the obtained results.

Publisher

MDPI AG

Subject

Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3