Monocular 3D Human Pose Markerless Systems for Gait Assessment

Author:

Zhu Xuqi1,Boukhennoufa Issam1,Liew Bernard2ORCID,Gao Cong1,Yu Wangyang34ORCID,McDonald-Maier Klaus D.1ORCID,Zhai Xiaojun1ORCID

Affiliation:

1. School of Computer Science and Electronic Engineering, University of Essex, Colchester CO4 3SQ, UK

2. School of Sport, Rehabilitation, and Exercise Sciences, University of Essex, Colchester CO4 3WA, UK

3. The Key Laboratory of Intelligent Computing and Service Technology for Folk Song, Ministry of Culture and Tourism, Xi’an 710119, China

4. School of Computer Science, Shaanxi Normal University, Xi’an 710119, China

Abstract

Gait analysis plays an important role in the fields of healthcare and sports sciences. Conventional gait analysis relies on costly equipment such as optical motion capture cameras and wearable sensors, some of which require trained assessors for data collection and processing. With the recent developments in computer vision and deep neural networks, using monocular RGB cameras for 3D human pose estimation has shown tremendous promise as a cost-effective and efficient solution for clinical gait analysis. In this paper, a markerless human pose technique is developed using motion captured by a consumer monocular camera (800 × 600 pixels and 30 FPS) for clinical gait analysis. The experimental results have shown that the proposed post-processing algorithm significantly improved the original human pose detection model (BlazePose)’s prediction performance compared to the gold-standard gait signals by 10.7% using the MoVi dataset. In addition, the predicted T2 score has an excellent correlation with ground truth (r = 0.99 and y = 0.94x + 0.01 regression line), which supports that our approach can be a potential alternative to the conventional marker-based solution to assist the clinical gait assessment.

Funder

Engineering and Physical Sciences Research Council

Royal Society International Exchanges

Natural Science Foundation of Shaanxi Province

Open Research Fund of Anhui Province Engineering Laboratory for Big Data Analysis and Early Warning Technology of Coal Mine Safety

Fundamental Research Funds for the Central Universities of China

Publisher

MDPI AG

Subject

Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3