Biofabrication of Poly(glycerol sebacate) Scaffolds Functionalized with a Decellularized Bone Extracellular Matrix for Bone Tissue Engineering

Author:

Guler Selcan,Eichholz Kian,Chariyev-Prinz FarhadORCID,Pitacco PierlucaORCID,Aydin Halil Murat,Kelly Daniel J.,Vargel İbrahim

Abstract

The microarchitecture of bone tissue engineering (BTE) scaffolds has been shown to have a direct effect on the osteogenesis of mesenchymal stem cells (MSCs) and bone tissue regeneration. Poly(glycerol sebacate) (PGS) is a promising polymer that can be tailored to have specific mechanical properties, as well as be used to create microenvironments that are relevant in the context of BTE applications. In this study, we utilized PGS elastomer for the fabrication of a biocompatible and bioactive scaffold for BTE, with tissue-specific cues and a suitable microstructure for the osteogenic lineage commitment of MSCs. In order to achieve this, the PGS was functionalized with a decellularized bone (deB) extracellular matrix (ECM) (14% and 28% by weight) to enhance its osteoinductive potential. Two different pore sizes were fabricated (small: 100–150 μm and large: 250–355 μm) to determine a preferred pore size for in vitro osteogenesis. The decellularized bone ECM functionalization of the PGS not only improved initial cell attachment and osteogenesis but also enhanced the mechanical strength of the scaffold by up to 165 kPa. Furthermore, the constructs were also successfully tailored with an enhanced degradation rate/pH change and wettability. The highest bone-inserted small-pore scaffold had a 12% endpoint weight loss, and the pH was measured at around 7.14. The in vitro osteogenic differentiation of the MSCs in the PGS-deB blends revealed a better lineage commitment of the small-pore-sized and 28% (w/w) bone-inserted scaffolds, as evidenced by calcium quantification, ALP expression, and alizarin red staining. This study demonstrates a suitable pore size and amount of decellularized bone ECM for osteoinduction via precisely tailored PGS elastomer BTE scaffolds.

Publisher

MDPI AG

Subject

Bioengineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3