Affiliation:
1. Engineering College, University of Hail, Hail 55476, Saudi Arabia
2. School of Engineering, University of Manchester, Oxford Road, Manchester M13 9PL, UK
3. Department of Life Sciences, Faculty of Science & Engineering, Manchester Metropolitan University, Manchester M15 6BH, UK
Abstract
Introduction: Osteoporosis is a skeletal disease that severely affects the mechanical properties of bone. It increases the porosity of cancellous bone and reduces the resistance to fractures. It has been reported in 2009 that there are approximately 500 million osteoporotic patients worldwide. Patients who suffer fractures due to fragility cost the National Healthcare Systems in the United Kingdom £4.4 billion in 2018, in Europe €56 billion in 2019, and in the United States $57 billion in 2018. Thus, osteoporosis is problematic for both patients and healthcare systems. Aim: This review is conducted for the purpose of presenting and discussing all articles introducing or investigating treatment solutions for osteoporotic patients undergoing total hip replacement. Methods: Searches were implemented using three databases, namely Scopus, PubMed, and Web of Science to extract all relevant articles. Predetermined eligibility criteria were used to exclude articles out of the scope of the study. Results: 29 articles out of 183 articles were included in this review. These articles were organised into three sections: (i) biomechanical properties and structure of osteoporotic bones, (ii) hip implant optimisations, and (iii) drug, cells, and bio-activators delivery through hydrogels. Discussion: The findings of this review suggest that diagnostic tools and measurements are crucial for understanding the characteristics of osteoporosis in general and for setting patient-specific treatment plans. It was also found that attempts to overcome complications associated with osteoporosis included design optimisation of the hip implant; however, only short-term success was reported, while the long-term stability of implants was compromised by the progressive nature of osteoporosis. Finally, it was also found that targeting implantation sites with cells, drugs, and growth factors has been outworked using hydrogels, where promising results have been reported regarding enhanced osteointegration and inhibited bacterial and osteoclastic activities. Conclusions: These results may encourage investigations that explore the effects of these impregnated hydrogels on osteoporotic bones beyond metallic scaffolds and implants.
Reference44 articles.
1. The mechanical properties of bone in osteoporosis;Dickenson;J. Bone Jt. Surg. Br.,1981
2. (2022, July 19). International Osteoporosis Foundation Epidemiology of Osteoporosis and Fragility Fractures|International Osteoporosis Foundation. Available online: https://www.osteoporosis.foundation/facts-statistics/epidemiology-of-osteoporosis-and-fragility-fractures.
3. National Institute for Health and Care Excellence (2018). NICE Impact Falls and Fragility Fractures, National Institute for Health and Care Excellence.
4. SCOPE 2021: A New Scorecard for Osteoporosis in Europe;Kanis;Arch. Osteoporos.,2021
5. Healthcare Policy Changes in Osteoporosis Can Improve Outcomes and Reduce Costs in the United States;Lewiecki;JBMR Plus,2019
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献