Design, Construction and Evaluation of an Oscillating Vane Gust Generator for Atmospheric Flow Simulation

Author:

French Aaron,Friess Wilhelm,Goupee AndrewORCID,Berube Keith

Abstract

The study of unsteady aerodynamic phenomena in wind tunnels is supported by gust-generating devices capable of generating adjustable magnitude and periodicity velocity fluctuations in a flowfield. Gusts are typically generated actively by introducing moving vanes to direct the flow, or passively by tailoring the boundary layer growth and shape in the tunnel. The flow facility used here is a student-built closed-return low-speed wind tunnel, with a test section size of 750 mm × 750 mm and a maximum speed of 25 m/s. A two-vane gust generator utilizing NACA0018 airfoil sections of 150 mm chord length was designed and installed upstream of the test section. The flowfield was mapped with the installed vanes with and without gust actuation, utilizing a hot wire system. The tunnel with gust vanes exhibits a spatially uniform baseline turbulence intensity of 5%, with a steady state velocity deficit of 1 m/s in the vane–wake region. Upon introducing the gusting conditions at vane deflection angles of up to ±45°, velocity differences of up to 4 m/s were attained at 18 m/s freestream velocity at oscillation frequencies ranging between 1 Hz and 2 Hz.

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3