A Framework for Predicting X-Nuclei Transmitter Gain Using 1H Signal

Author:

Vaeggemose Michael12ORCID,Schulte Rolf F.3ORCID,Hansen Esben S. S.2ORCID,Miller Jack J.2ORCID,Rasmussen Camilla W.2ORCID,Pilgrim-Morris Jemima H.4ORCID,Stewart Neil J.4ORCID,Collier Guilhem J.4ORCID,Wild Jim M.4,Laustsen Christoffer2ORCID

Affiliation:

1. GE HealthCare, 2605 Brondby, Denmark

2. MR Research Centre, Aarhus University, 8200 Aarhus, Denmark

3. GE HealthCare, 80807 Munich, Germany

4. POLARIS Group, University of Sheffield, Sheffield S10 2TN, UK

Abstract

Commercial human MR scanners are optimised for proton imaging, containing sophisticated prescan algorithms with setting parameters such as RF transmit gain and power. These are not optimal for X-nuclear application and are challenging to apply to hyperpolarised experiments, where the non-renewable magnetisation signal changes during the experiment. We hypothesised that, despite the complex and inherently nonlinear electrodynamic physics underlying coil loading and spatial variation, simple linear regression would be sufficient to accurately predict X-nuclear transmit gain based on concomitantly acquired data from the proton body coil. We collected data across 156 scan visits at two sites as part of ongoing studies investigating sodium, hyperpolarised carbon, and hyperpolarised xenon. We demonstrate that simple linear regression is able to accurately predict sodium, carbon, or xenon transmit gain as a function of position and proton gain, with variation that is less than the intrasubject variability. In conclusion, sites running multinuclear studies may be able to remove the time-consuming need to separately acquire X-nuclear reference power calibration, inferring it from the proton instead.

Funder

Innovation Fund Denmark

Novo Nordisk Fonden

MRC

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging

Reference35 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3