Atlas-Based Adaptive Hadamard-Encoded MR Spectroscopic Imaging at 3T

Author:

Liu Huawei1,Autry Adam W.1,Larson Peder E. Z.12ORCID,Xu Duan12,Li Yan1ORCID

Affiliation:

1. Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94107, USA

2. UC Berkeley-UCSF Graduate Program in Bioengineering, University of California San Francisco, San Francisco, CA 94107, USA

Abstract

Background: This study aimed to develop a time-efficient method of acquiring simultaneous, dual-slice MR spectroscopic imaging (MRSI) for the evaluation of brain metabolism. Methods: Adaptive Hadamard-encoded pulses were developed and integrated with atlas-based automatic prescription. The excitation profiles were evaluated via simulation, phantom and volunteer experiments. The feasibility of γ-aminobutyric acid (GABA)-edited dual-slice MRSI was also assessed. Results: The signal between slices in the dual-band MRSI was less than 1% of the slice profiles. Data from a homemade phantom containing separate, interfacing compartments of creatine and acetate solutions demonstrated ~0.4% acetate signal contamination relative to the amplitude in the excited creatine compartment. The normalized signal-to-noise ratios from atlas-based acquisitions in volunteers were found to be comparable between dual-slice, Hadamard-encoded MRSI and 3D acquisitions. The mean and standard deviation of the coefficients of variation for NAA/Cho from the repeated volunteer scans were 8.2% ± 0.8% and 10.1% ± 3.7% in the top and bottom slices, respectively. GABA-edited, dual-slice MRSI demonstrated simultaneous detection of signals from GABA and coedited macromolecules (GABA+) from both superior grey and deep grey regions of volunteers. Conclusion: This study demonstrated a fully automated dual-slice MRSI acquisition using atlas-based automatic prescription and adaptive Hadamard-encoded pulses.

Funder

NIH

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3