An Anthropomorphic Digital Reference Object (DRO) for Simulation and Analysis of Breast DCE MRI Techniques

Author:

Henze Bancroft LeahORCID,Holmes JamesORCID,Bosca-Harasim Ryan,Johnson Jacob,Wang Pingni,Korosec Frank,Block Walter,Strigel Roberta

Abstract

Advances in accelerated magnetic resonance imaging (MRI) continue to push the bounds on achievable spatial and temporal resolution while maintaining a clinically acceptable image quality. Validation tools, including numerical simulations, are needed to characterize the repeatability and reproducibility of such methods for use in quantitative imaging applications. We describe the development of a simulation framework for analyzing and optimizing accelerated MRI acquisition and reconstruction techniques used in dynamic contrast enhanced (DCE) breast imaging. The simulation framework, in the form of a digital reference object (DRO), consists of four modules that control different aspects of the simulation, including the appearance and physiological behavior of the breast tissue as well as the MRI acquisition settings, to produce simulated k-space data for a DCE breast exam. The DRO design and functionality are described along with simulation examples provided to show potential applications of the DRO. The included simulation results demonstrate the ability of the DRO to simulate a variety of effects including the creation of simulated lesions, tissue enhancement modeled by the generalized kinetic model, T1-relaxation, fat signal precession and saturation, acquisition SNR, and changes in temporal resolution.

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging

Reference82 articles.

1. DCE MRI Quantification Profile. Quantitative Imaging Biomarkers Alliance. Version 1.0. Profile Stage: Reviewed Drafthttpp://rsna.org/QIBA_.aspx

2. Quantitative imaging biomarkers alliance (QIBA) recommendations for improved precision of DWI and DCE‐MRI derived biomarkers in multicenter oncology trials

3. Variability in Quantitative DCE-MRI: Sources and Solutions;Kim;J. Nat. Sci.,2018

4. Cancer Facts & Figures 2021,2021

5. A Novel Approach to Contrast-Enhanced Breast Magnetic Resonance Imaging for Screening

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3