Lumbar and Thoracic Vertebrae Segmentation in CT Scans Using a 3D Multi-Object Localization and Segmentation CNN

Author:

Xiong Xiaofan1ORCID,Graves Stephen A.2,Gross Brandie A.3,Buatti John M.3ORCID,Beichel Reinhard R.4

Affiliation:

1. Department of Biomedical Engineering, The University of Iowa, Iowa City, IA 52242, USA

2. Department of Radiology, The University of Iowa, Iowa City, IA 52242, USA

3. Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA

4. Department of Electrical and Computer Engineering, The University of Iowa, Iowa City, IA 52242, USA

Abstract

Radiation treatment of cancers like prostate or cervix cancer requires considering nearby bone structures like vertebrae. In this work, we present and validate a novel automated method for the 3D segmentation of individual lumbar and thoracic vertebra in computed tomography (CT) scans. It is based on a single, low-complexity convolutional neural network (CNN) architecture which works well even if little application-specific training data are available. It is based on volume patch-based processing, enabling the handling of arbitrary scan sizes. For each patch, it performs segmentation and an estimation of up to three vertebrae center locations in one step, which enables utilizing an advanced post-processing scheme to achieve high segmentation accuracy, as required for clinical use. Overall, 1763 vertebrae were used for the performance assessment. On 26 CT scans acquired for standard radiation treatment planning, a Dice coefficient of 0.921 ± 0.047 (mean ± standard deviation) and a signed distance error of 0.271 ± 0.748 mm was achieved. On the large-sized publicly available VerSe2020 data set with 129 CT scans depicting lumbar and thoracic vertebrae, the overall Dice coefficient was 0.940 ± 0.065 and the signed distance error was 0.109 ± 0.301 mm. A comparison to other methods that have been validated on VerSe data showed that our approach achieved a better overall segmentation performance.

Funder

NIH/NCI

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3