Fast Segmentation of Vertebrae CT Image Based on the SNIC Algorithm

Author:

Li Bing,Wu Shaoyong,Zhang Siqin,Liu Xia,Li Guangqing

Abstract

Automatic image segmentation plays an important role in the fields of medical image processing so that these fields constantly put forward higher requirements for the accuracy and speed of segmentation. In order to improve the speed and performance of the segmentation algorithm of medical images, we propose a medical image segmentation algorithm based on simple non-iterative clustering (SNIC). Firstly, obtain the feature map of the image by extracting the texture information of it with feature extraction algorithm; Secondly, reduce the image to a quarter of the original image size by downscaling; Then, the SNIC super-pixel algorithm with texture information and adaptive parameters which used to segment the downscaling image to obtain the superpixel mark map; Finally, restore the superpixel labeled image to the original size through the idea of the nearest neighbor algorithm. Experimental results show that the algorithm uses an improved superpixel segmentation method on downscaling images, which can increase the segmentation speed when segmenting medical images, while ensuring excellent segmentation accuracy.

Funder

the National Natural Foundation of China

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging

Reference27 articles.

1. Segmentation of thyroid nodules based on CV model and DRLSE model;Jiang;J. Chang. Univ. Technol.,2017

2. A Region-Based Deep Level Set Formulation for Vertebral Bone Segmentation of Osteoporotic Fractures

3. Low order adaptive region growing for lung segmentation on plain chest radiographs

4. Hidden markov random fields and cuckoo search method for medical image segmentation;Guerrout;arXiv,2020

5. Liver segmentation in MRI images based on whale optimization algorithm

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3