Author:
Jin Dan,Zheng Han,Zhao Qingqing,Wang Chunjie,Zhang Mengze,Yuan Huishu
Abstract
This paper proposes a deep-learning-based image enhancement approach that can generate high-resolution micro-CT-like images from multidetector computed tomography (MDCT). A total of 12,500 MDCT and micro-CT image pairs were obtained from 25 vertebral specimens. Then, a pix2pixHD model was trained and evaluated using the structural similarity index measure (SSIM) and Fréchet inception distance (FID). We performed subjective assessments of the micro-CT-like images based on five aspects. Micro-CT and micro-CT-like image-derived trabecular bone microstructures were compared, and the underlying correlations were analyzed. The results showed that the pix2pixHD method (SSIM, 0.804 ± 0.037 and FID, 43.598 ± 9.108) outperformed the two control methods (pix2pix and CRN) in enhancing MDCT images (p < 0.05). According to the subjective assessment, the pix2pixHD-derived micro-CT-like images showed no significant difference from the micro-CT images in terms of contrast and shadow (p > 0.05) but demonstrated slightly lower noise, sharpness and trabecular bone texture (p < 0.05). Compared with the trabecular microstructure parameters of micro-CT images, those of pix2pixHD-derived micro-CT-like images showed no significant differences in bone volume fraction (BV/TV) (p > 0.05) and significant correlations in trabecular thickness (Tb.Th) and trabecular spacing (Tb.Sp) (Tb.Th, R = 0.90, p < 0.05; Tb.Sp, R = 0.88, p < 0.05). The proposed method can enhance the resolution of MDCT and obtain micro-CT-like images, which may provide new diagnostic criteria and a predictive basis for osteoporosis and related fractures.
Funder
Beijing Natural Science Foundation
National Natural Science Foundation of China
Beijing New Health Industry Development Foundation
Subject
Radiology, Nuclear Medicine and imaging
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献